Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (4) :402-416    DOI: 10.1007/s11633-017-1111-x
Research Article Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Unmanned Aerial Vehicle Formation Inspired by Bird Flocking and Foraging Behavior
Tian-Jie Zhang
Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Download: [PDF 1944KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on bird foraging behavior, a controller based on bird interaction and a movement switch are developed for multi-UAV formation. Lyapunov's second method and mechanical energy method are adopted for stability analysis. Parameters of the controller are optimized by Levy-flight based pigeon inspired optimization (Levy-PIO). Patrol missions along a square and an S shaped trajectory are designed to test this formation method. Simulations prove that the bird flocking and foraging strategy can accomplish the mission and obtain satisfying performance.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsUnmanned aerial vehicle (UAV)   formation   bird flocking   foraging   pigeon-inspired optimization   Levy-flight     
Received: 2017-06-08; published: 2017-11-10
Corresponding Authors: Tian-Jie Zhang     Email: 11031148@buaa.edu.cn
About author: Tian-Jie Zhang received the B.Sc. degree in control science and engineering from Beijing University of Aeronautics and Astronautics (BUAA), China in 2015. Now, he is a master student in control science and engineering at BUAA, China. Hisresearch interest is aircraft mission planning. E-mail: 11031148@buaa.edu.cn (Corresponding author)ORCID iD: 0000-0003-3810-2582
Cite this article:   
Tian-Jie Zhang. Unmanned Aerial Vehicle Formation Inspired by Bird Flocking and Foraging Behavior[J]. International Journal of Automation and Computing , vol. 15, no. 4, pp. 402-416, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-017-1111-x      或     http://www.ijac.net/EN/Y2018/V15/I4/402
 
[1] M. A. Dehghani, M. B. Menhaj. Communication free leader-follower formation control of unmanned aircraft systems. Robotics and Autonomous Systems, vol.80, pp.69-75, 2016.
[2] T. Paul, T. R. Krogstad, J. T. Gravdahl. Modelling of UAV formation flight using 3D potential fields. Simulation Modelling Practice and Theory, vol.16, no.9, pp.1453-1462, 2008.
[3] Y. Fu, X. K. Wang, H. Y. Zhu, Y. G. Yu. Parameters optimization of multi-UAV formation control method based on artificial physics. In Proceedings of 35th Chinese Control Conference, IEEE, Chengdu, China, pp. 2614-2619, 2016.
[4] W. Ren, N. Sorensen. Distributed coordination architecture for multi-robot formation control. Robotics and Autonomous Systems, vol. 56, pp.324-333, 2008.
[5] T. Balch, R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, vol.14, no.6, pp.926-939, 1998.
[6] R. H. Masure, W. C. Allee. The social order in flocks of the common chicken and the pigeon. Auk, vol.51, pp.306-327, 1934.
[7] M. Nagy, Z. Akos, D. Biro, T. Vicsek. Hierarchical group dynamics in pigeon flocks. Nature, vol.464, pp.890-893, 2010.
[8] Z. Y. Chen, H. T. Zhang, X. Chen, D Chen, T Zhou. Two-level leader-follower organization in pigeon flocks. Europhysics Letters, vol.112, no.2, pp. 20008 p1-p6, 2015.
[9] B. Pettit, Z. Akos, T. Vicsek, D. Biro. Speed determines leadership and leadership determines learning during pigeon flocking. Current Biology, vol.25, no.23, pp.3132-3137, 2015.
[10] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefaninib, et al. Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.26, pp.11865-11870, 2010.
[11] R. Lukeman, Y. X. Li, E. K. Leah. Inferring individual rules from collective behavior. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.28, pp.12576-12580, 2010.
[12] A. Cavagna, I. Giardina, F. Ginelli. Boundary information inflow enhances correlation in flocking. Physical Review Letters, vol.110, no.16, pp.168107 p1-p5, 2013.
[13] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina. Interaction ruling animal collective behavior depends on topological rather than metric distance:evidence from a field study. Proceedings of the National Academy of Sciences of the United States of America, vol.105, no.4, pp.1232-1237, 2008.
[14] B. Pettit, A. Perna, D. Biro, D. J. Sumpter. Interaction rules underlying group decisions in homing pigeons. Journal of the Royal Society Interface, vol.10, no.80, pp.20130529, 2013.
[15] H. Pomeroy, F. Heppner. Structure of turning in airborne rock dove (Columba Livia) flocks. Auk, vol.109, no.2, pp.256-267, 1992.
[16] M. Yomosa, T. Mizuguchi, G. Vasarhelyi, M. Nagy. Coordinated behaviour in pigeon flocks. Plos One, vol.10, no.10, pp.1-17, 2015
[17] T. Niizato, Y. P. Gunji. Metric-topological interaction model of collective behavior. Ecological Modelling, vol.222, no.17, pp. 3041-3049, 2011
[18] H. X. Qiu, H. B. Duan. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dynamics, vol.78 no.3, pp.1973-1988, 2014
[19] S. Kim, Y. Kim. Three dimensional optimum controller for multiple UAV formation flight using behavior-based decentralized approach. In Proceedings of International Conference on Control, Automation and Systems 2007, IEEE, Seoul, Korea, pp. 17-20, 2007
[20] P. P. Dai, C. L. Liu, L. F. Liu. Consensus problem of heterogeneous multi-agent systems with time delay under fixed and switching topologies. International Journal of Automation and Computing. vol.11, no.3, pp.340-346, 2014.
[21] M. S. Mahmoud, Y. Q. Xia. The interaction between control and computing theories:new approaches. International Journal of Automation and Computing. vol.14, no.3, pp. 254-274, 2017.
[22] R. Freeman, R. Mann, T. Guilford, D. Biro. Group decisions and individual differences:route fidelity predicts flight leadership in homing pigeons (Columba livia). Biology Letters. vol.7, no.1, pp.63-66, 2011.
[23] C. Reynolds. Flocks, herds and schools:a distributed behavioral model. In Proceedings of Conference on Computer Graphics and Interactive Techniques, ACM, Anaheim, USA, pp.25-34, 1987.
[24] C. K. Hemelrijk, H. Hildenbrandt. Some causes of the variable shape of flocks of birds. Plos One, vol.6, no.8, pp. e22479, 2011.
[25] R. C. Rafaila, C. F. Caruntu, G. Livint. Centralized model predictive control of autonomous driving vehicles with Lyapunov stability. In Proceedings of International Conference on System Theory, Control and Computing, IEEE, Sinaia, Romania, pp.663-668, 2016.
[26] Y. Wang, Z. Miao, H. Zhong, Q. Pan. Simultaneous stabilization and tracking of nonholonomic mobile robots:a Lyapunov-based approach. IEEE Transactions on Control Systems Technology, vol.23, no.4, pp.1440-1450, 2015.
[27] X. Y. Zhang, H. B. Duan. Altitude consensus based 3D flocking control for fixed-wing unmanned aerial vehicle swarm trajectory tracking. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, vol.230, no.14, pp. 2628-2638, 2016.
[28] M. Favata. Conservative self-force correction to the innermost stable circular orbit:comparison with multiple post-Newtonian-based methods. Physical Review D Particles and Fields, vol.83, no.83, pp.024027-1-26, 2011.
[29] Y. M. Deng, H. B. Duan. Control parameter design for automatic carrier landing system via pigeon-inspired optimization. Nonlinear Dynamics, vol. 85, no.1, pp. 97-106, 2016.
[30] H. B. Duan, X. H. Wang. Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE Transactions on Neural Networks and Learning Systems, vol.27, no.11, pp.2413-2425, 2016.
[31] R. Dou, H. B. Duan. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system. Aerospace Science and Technology, vol.61, pp.11-20, 2017.
[1] Biao Chang, Tong Xu, Qi Liu, En-Hong Chen.Study on Information Diffusion Analysis in Social Networks and Its Applications[J]. International Journal of Automation and Computing , 2018,15(4): 377-401
[2] Bitla Venu, Venkateswara Rao Komma, Deepanshu Srivastava.STEP-based Feature Recognition System for B-spline Surface Features[J]. International Journal of Automation and Computing , 2018,15(4): 500-512
[3] Jhon A. Isaza, Hector A. Botero, Hernan Alvarez.State Estimation Using Non-uniform and Delayed Information: A Review[J]. International Journal of Automation and Computing , 2018,15(2): 125-141
[4] Ao-Lei Yang, Wasif Naeem, Min-Rui Fei, Li Liu, Xiao-Wei Tu.Multiple Robots Formation Manoeuvring and Collision Avoidance Strategy[J]. International Journal of Automation and Computing , 2017,14(6): 696-705
[5] He Deng, Huang Yao, Yan-Tao Wei, Ji-Dong Chen.A Parzen Window-based Approach to Detection of Infrared Dim Target Under Sea-sky Background[J]. International Journal of Automation and Computing , 2016,13(5): 447-456
[6] Jun Yang, Zhong-Ke Shi, Zi-Yan Wu.Towards Automatic Generation of As-built BIM: 3D Building Facade Modeling and Material Recognition from Images[J]. International Journal of Automation and Computing , 2016,13(4): 338-349
[7] Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati.Cooperative Formation Control of Autonomous Underwater Vehicles: An Overview[J]. International Journal of Automation and Computing , 2016,13(3): 199-225
[8] Shuang Huang, Chun-Jie Zhou, Shuang-Hua Yang, Yuan-Qing Qin.Cyber-physical System Security for Networked Industrial Processes[J]. International Journal of Automation and Computing , 2015,12(6): 567-578
[9] Wen-Rui Hu, Yuan Xie, Lin Li, Wen-Sheng Zhang.A TV-l1 Based Nonrigid Image Registration by Coupling Parametric and Non-parametric Transformation[J]. International Journal of Automation and Computing , 2015,12(5): 467-481
[10] Ju-Ping Gu, Liang Hua, Xiao Wu, Hui Yang, Zhen-Tao Zhou.Color Medical Image Enhancement Based on Adaptive Equalization of Intensity Numbers Matrix Histogram[J]. International Journal of Automation and Computing , 2015,12(5): 551-558
[11] Guo-Jin Feng, James Gu, Dong Zhen, Mustafa Aliwan, Feng-Shou Gu, Andrew D. Ball.Implementation of Envelope Analysis on a Wireless Condition Monitoring System for Bearing Fault Diagnosis[J]. International Journal of Automation and Computing , 2015,12(1): 14-24
[12] Chun-Xia Dou, Ting Gui, Ye-Fei Bi, Jin-Zhao Yang, Xiao-Gang Li.Assessment of Power Quality Based on D-S Evidence Theory[J]. International Journal of Automation and Computing , 2014,11(6): 635-643
[13] R. I. Minu, K. K. Thyagharajan.Semantic Rule Based Image Visual Feature Ontology Creation[J]. International Journal of Automation and Computing , 2014,11(5): 489-499
[14] Xiao-Fei Ji, Qian-Qian Wu, Zhao-Jie Ju, Yang-Yang Wang.Study of Human Action Recognition Based on Improved Spatio-temporal Features[J]. International Journal of Automation and Computing , 2014,11(5): 500-509
[15] Elder M. Hemerly.Automatic Georeferencing of Images Acquired by UAV’s[J]. International Journal of Automation and Computing , 2014,11(4): 347-352
Copyright 2010 by International Journal of Automation and Computing