Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (5) :603-615    DOI: 10.1007/s11633-016-0985-3
Research Article Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
Cui-Mei Jiang1, Shu-Tang Liu1, Fang-Fang Zhang2
1. College of Control Science and Engineering, Shandong University, Jinan 250061, China;
2. School of Electrical Engineering and Automation, Qilu University of Technology, Jinan 250353, China
Download: [PDF 2696KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The aim of this paper is to study complex modified projective synchronization (CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rössler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real L¨ u system. Numerical simulations confirm the validity and feasibility of the analytical method.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords:   
Received: 2014-10-21; published: 2015-03-04
Fund:

This work was supported by Key Program of National Natural Science Foundation of China (No. 61533011) and National Natural Science Foundation of China (Nos. 61273088 and 61603203).

Corresponding Authors: Shu-Tang Liu     Email: stliu@sdu.edu.cn
About author: Cui-Mei Jiang research interests include adaptive control and chaos control.E-mail:jiangcuimei2004@163.com ORCID iD:0000-0002-1032-8355;Shu-Tang Liu research interests include spatial chaotic theory of nonlinear dynamical systems and their applications,qualitative theory and qualitative control of complex systems,control and applications of fractals.E-mail:stliu@sdu.edu.cn (Corresponding author) ORCID iD:0000-0003-2281-9378;Fang-Fang Zhang research interests include adaptive control,chaos control and intelligent control. E-mail:zhff4u@163.com
Cite this article:   
Cui-Mei Jiang, Shu-Tang Liu, Fang-Fang Zhang. Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems[J]. International Journal of Automation and Computing , vol. 15, no. 5, pp. 603-615, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-016-0985-3      或     http://www.ijac.net/EN/Y2018/V15/I5/603
 
[1] A. C. Fowler, J. D. Gibbon, M. J. McGuinness. The complex Lorenz equations. Physcia D, vol. 4, pp. 139-163, 1982.
[2] G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa. On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communictations. Physcia Scripta, vol. 87, no. 5, Article number 055002, 2013.
[3] S. T. Liu, F. F. Zhang. Complex function projective synchronization of complex chaotic system and its applications in secure communications. Nonlinear Dynamics, vol. 76, pp. 1087-1097, 2014.
[4] E. Roldan, G. J. Devalcarcel, R. Vilaseca. Single-ModeLaser phase dynamics. Physical Review A, vol. 48, no. 1, pp. 591-598, 1993.
[5] C. Z. Ning, H. Haken. Detuned lasers and the complex Lorenz equations-subcritical and supercritical Hofp bifurcations. Physical Review A, vol. 41, no. 7, pp. 3826-3837, 1990.
[6] V. Y. Toronov, V. L. Derbov. Boundedness of attractors in the complex Lorenz model. Physical Review E, vol. 55, no. 3, pp. 3689-3692, 1997.
[7] G. M. Mahmoud, M. A. AlKashif, S. A. Aly. Basic properties and chaotic synchronization of complex Lorenz system. International Journal of Modern Physics C, vol. 18, pp. 253-265, 2007.
[8] G. M. Mahmoud, T. Bountis, E. E. Mahmoud. Active control and global synchronization of the complex Chen and Lü systems. International Journal of Bifurcation and Chaos, vol. 17, pp. 4295-4308, 2007.
[9] G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed. On the hyperchaotic complex Lü systems. Nonlinear Dynamics, vol. 58, pp. 725-738, 2009.
[10] G. M. Mahmoud, M. E. Ahmed, E. E. Mahmoud. Analysis of hyperchaotic complex Lorenz systems. International Journal of Modern Physics C, vol. 19, pp. 1477-1494, 2008.
[11] G. M. Mahmoud, M. E. Ahmed. On autonomous and nonautonomous modified hyperchaotic complex Lü systems. International Journal of Bifurcation and Chaos, vol. 21, pp. 1913-1926, 2011.
[12] G. M. Mahmoud, E. E. Mahmoud. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, vol. 62, pp. 875-882, 2010.
[13] P. Liu, S. T. Liu. Anti-synchronization of chaotic complex nonlinear systems. Physcia Scripta, vol. 83, no. 5, Article number 065006, 2011.
[14] P. Liu, S. T. Liu. Adaptive Anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Analysis:Real World Applications, vol. 12, pp. 3046-3055, 2010.
[15] G. M. Mahmoud, E. E. Mahmoud. Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dynamics, vol. 67, pp. 1613-1622, 2012.
[16] G. M. Mahmoud, E. E. Mahmoud. Phase synchronization and anti-phase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dynamics, vol. 61, pp. 141-152, 2010.
[17] G. M. Mahmoud, E. E. Mahmoud. Synchronization and control of hyperchaotic complex Lorenz systems. Mathematics and Computers in Simulation, vol. 80, no. 2, pp. 2286-2296, 2010.
[18] F. F. Zhang, S. T. Liu. Full state hybrid projective synchronization and parameters identification for uncertain chaotic (hyperchaotic) complex systems. Journal of Computational and Nonlinear Dynamics, vol. 9, no. 2, Article number 021009, 2013.
[19] G. M. Mahmoud, E. E. Mahmoud. Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dynamics, vol. 73, pp. 2231-2240, 2013.
[20] F. F. Zhang, S. T. Liu, W. Y. Yu. Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos. Chinese Physics B, vol. 22, no. 12, Article number 120505, 2013.
[21] C. Luo, X. Y. Wang. Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dynamics, vol. 71, pp. 241-257, 2013.
[22] C. Luo, X. Y. Wang. Chaos generated from the fractionalorder complex Chen system and its application to digital secure communication. International Journal of Modern Physics C, vol. 24, no. 4, Article number 1350025, 2013.
[23] X. J. Liu, L. Hong, L. X. Yang. Fractional-order complex T system:bifurcations, chaos control, and synchronization. Nonlinear Dynamics, vol. 75, pp. 589-602, 2014.
[24] J. Liu. Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos. Entropy, vol. 16, pp. 6195-6211, 2014.
[25] K. B. Oldham, J. Spanier. The Fractional Calculus. Academic Press, San Diego, USA:1974.
[26] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, USA:1999.
[27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, the Netherlands, 2006.
[28] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral. Fractal system as represented by singularity function. IEEE Transactions on Automatic Contro, vol. 37, no. 9, pp. 1465-1470, 1992.
[29] K. Diethelm, N. J. Ford, A. D. Freed. A predictor-corrector approch for the numerical solution of fractional differential equations. Nonlinear Dynamics, vol. 29, pp. 3-22, 2002.
[30] K. Diethelm, N. J. Ford, A. D. Freed. Detailed error analysis for a fractional Adams method. Numerical algorithms, vol. 36, pp. 31-52, 2004.
[31] D. Matignon. Stability results for fractional differential equations with applications to control processing. In Proceedings of IMACS/IEEE-SMC Multiconference on Control, Optimization and Supervision, IEEE, Lille, France, pp. 963-968, 1996.
[32] W. Deng, C. Li, J. Lü. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, vol. 48, pp. 409-16, 2007.
[33] L. Pan, W. N. Zhou, J. N. Fang, D. Q. Li. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 3754-3762, 2010.
[34] G. Q. Si, Z. Y. Sun, Y. B. Zhang, W. Q. Chen. Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis:Real World Applications, vol. 13, pp. 1761-1771, 2012.
[35] C. G. Li, G. R. Chen. Chaos and hyperchaos in the fractional-order Rössler equations. Communications in Nonlinear Science and Numerical Simulation A, vol. 341, pp. 55-614, 2004.
[36] J. G. Lu. Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, vol. 354, no. 4, pp. 305-311, 2006.
No similar article found!
Copyright 2010 by International Journal of Automation and Computing